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We present accurate numerical methods for calculating the one boson and the one fermion 
loop energy in a static, spherically symmetric background field for a simple theory of fermions 
interacting with bosons through Yukawa coupling. Various FORTRAN codes have been 
developed and tested for the calculations. The methods presented here should be useful in 
general problems involving one loop quantum corrections, and in other problems where one 
needs to calculate the Green’s function for a particle moving in a background field. 0 1989 
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I. INTRODUCTION 

The calculation of loop corrections in strong-coupling Fermi-Bose field theories 
requires extreme accuracy. We have developed precision methods for such purposes 
and have applied them, as a special case, to the Friedberg-Lee nontopological 
soliton model [ 11. 

One-loop corrections to the energy require summing the negative energy states of 
the (deformed) Dirac sea and the normal mode energies of the Bose field. The 
energies for the non-interacting field must be subtracted, and further subtractions 
which yield renormalization of the coupling constants are required to obtain physi- 
cal results. These subtractions of large quantities to obtain small remainders require 
extreme precision; subtraction of analytic from numerical quantities should be 
avoided. Subtraction of numerical from numerical quantities are best done for 
quantities calculated with the same algorithm. 

The methods presented here involve the construction of Fermi and Bose Green’s 
functions for imaginary energy. Energy sums are executed by a contour integration 
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along the imaginary axis. Other properties of the system can be evaluated from 
appropriate integrations of the Green’s functions thus obtained. 

The general methods for calculating loop corrections using Green’s functions 
evaluated along the imaginary energy axis are well known [2, 81. The present work 
contains novel methods which, the authors believe, yield high accuracy and 
efficiency and therefore may be of considerable value to practitioners in the field. 

In the following, we divide our discussions into four sections. In Section II, we 
use the FriedberggLee soliton model as an example to introduce the general 
formalism. In Section III, we discuss how to calculate the full boson and fermion 
Green’s functions. In Section IV, we discuss how to evaluate the boson and fermion 
renormalization subtractions. Finally in Section V, we present some sample results. 

II. THE FRIEDBERGLEE MODEL AS AN EXAMPLE 

The Friedberg-Lee non-topological soliton model is an example of a system of 
(strongly) interacting massless Fermi and non-linear Bose fields. For the present 
paper, we ignore the gluon field (which is actually at the crux of color confinement). 
The Lagrangian is given by 

2 = h(a,4)‘- U(4) + $(ia - gd)$ + counterterms, (2.1) 

where 

(2.2) 

The self-energy term U(d) is chosen to terminate in fourth order for renor- 
malizability, even though the $-field is to be regarded as an effective one, and loop 
corrections may not be appropriate. Here we utilize quantum corrections in this 
model as a test of the methods. 

The one-loop correction to the energy is given by 

E= C (niEi - nOiEOi) + 4 1 (h, - A,), (2.3) 
i , 

where sOi, si, h,, and h, are defined below. The first sum is the fermion energy. The 
occupation number ni is taken to be 0 or 1, to allow for the presence of valence 
quarks; for the vacuum, noi = 1 if sgi < 0 and noi = 0 if sgi > 0. The second sum is the 
zero-point energy of the Bose field. Written in this form the energy still contains 
infinities which, however, depend on 4, in the same form as the original Lagrangian 
and are canceled by the counterterms. 

Let 4, = (+), which is assumed to be time-independent and spherically 
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symmetric throughout this paper. The fermion energies, E,, are determined by the 
Dirac equation 

(-ia.V+j?g~,.)$i=Ej$i, (2.4) 

and the Bose eigenvalues satisfy 

t-V’+ wA.))dj==h,2dj, (2.5) 

where W(d,,) = d’Ujd@. The corresponding Green’s functions satisfy 

(V2 + w2 - W(q5,)) D(w, r, r’) = d3(r -I-‘), (2.6) 

(ia .V + 0 - Bgd,(r)) yOS(o, r, r’) = d3(r - r’). (2.7) 

The corresponding free Green’s functions satisfy the same equations with the 
replacement of W and 4, by W, and &,, where &, is the minimum of U(4) and 
W, = W(q5,). The fermion energy can also be expressed as 

1 
-I odwTry’S(o,r,r) 
27ci c 

and the boson energy as 

1 
--I w2dwTrD(w,r,r), 

2ni c 

(2.8) 

(2.9) 

where the trace “Tr” is taken on spatial variables (i.e., spatial integration) and 
Dirac indices for the fermion case. In the fermion case, the contour encloses the 
poles of the occupied sea plus valence states and runs from -co to + cc along the 
real w-axis. It is convenient to separate out the valence states explicitly and deform 
the contour to the imaginary axis, so that w = iy and -co < y < + co. In the Bose 
case, the contour is the same as in the fermion case, without enclosing any valence 
states and is again deformed to the imaginary axis. 

Infinities are removed in the usual way by expanding S and D and identifying the 
divergences with the negative of counter terms in the standard way. We then obtain 
a finite expression for the energy [3,4], 

E= c 
(valence ) 

Q+[+~ ~co y2$Tr{D(iy)-Do(iy)-D~(iy)l?-D~(iy)~z} 

+iJ 
+m dy 
em Y G Tr Y”{S(iY) - So(iY) - S3iyNgiJ,) - S~(iyk$,.)2 

- S3~Y)MJ3 - G(~Y)(MJ4 - w&)2)}, 

where $C=~C-~O, w= W- W,. 

(2.10) 
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We use the fact that 4, is spherically symmetric, $E(r) = 4,(r), and make a partial 
wave decomposition of the Green’s functions. With the definition 

we have 

D,(y , r, r’) Yd4 4) YEA@, 4’1, (2.11) 

A2 1(1+ 1) 
----y2- W 
dr2 r2 

D,(y,r,r’)=@r-r’). (2.12) 

One can expand D, in the same fashion as D is expanded. In this case, D, is 
replaced by D,, which satisfies Eq. (2.12) with W replaced by W,,. Similarly, we can 
make a partial wave decomposition of the fermion Green’s functions. Defining 

and expanding 

G(y, r, r’) E - y,S(iy, r, r’) (2.13) 

we have 

g#Ar) - iy - d/dr - u/r 
djdr - u/r - d,(r) - iy 

G,(y,r,r’)=h(r-r’), (2.15) 

where the spinor harmonics are 

(2.16) 

The ( lm,$y 1 jm ) are Clebsch-Gordon coefficients, 

1 0 

x.112 = 0 

o 

2 x-1/2= 0 
1 (2.17) 

are the 2-components Pauli spinors, and j is the total angular momentum. K is the 
Dirac quantum number, K = (- 1 y-” ‘I2 (j+ i). For the free Green’s function, we 
define 

Gdy, r, r’) = -yo&(iy, r, r’). (2.18) 

One can make a partial wave expansion for G, that is identical to Eq. (2.14) with 
G, being replaced by GOK, which satisfy Eq. (2.15) with 4, replaced by &. 

We use the property 

G-,(y, r, r’)= -a,G,(--Y, r, r’)clr (2.19) 
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to see that 

trG_.(y, r, r’) = - trG,( - y, r, r’), 

where (pi is the first Pauli matrix. Then we obtain from Eq. (2.10) [3, 41, 

E= 1 Ei+ 1 (21+ l)E,,+4 1 KEEP, 

(valence) I=0 K=l 

where 

- @XY, r, r) P-- D&(y, r, r) W”}, 

with WY, r, r) = (4 WY) Ir>, 

EFK=[+m y2$jm dr ir 1 Im G,( y, r, r) + cOK + G& 
-cc 0 Y 
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(2.20) 

(2.21) 

(2.22) 

x {(gd,)‘- k4J2) + c,${ CW,)‘- k40)212 + b$:ol’}}. (2.23) 

Here we have 

where 

p-d2 K(y) 

OK dr* WoJ2 - Y2. 

(2.24) 

(2.25) 

From the above equations, we see that the fermion renormalization subtractions for 
a K partial wave component can be constructed exactly as the boson renormaliza- 
tion subtractions, except that they are actually equivalent to the sum of the subtrac- 
tions for a 2-component boson. This observation simplifies our later numerical 
calculations. 

The numerical evaluation of E in Eq. (2.21) involves three steps. First, one needs 
to calculate the Fermi valence eigenvalues, Ed. There exist standard methods for this 
purpose [3, 51. Second, one needs to calculate the boson loop energy. Finally, one 
needs to calculate the fermion loop energy. The essential steps in calculating boson 
and fermion loop energies include constructing the full Green’s functions and 
calculating the various renormalization counterterms. These basic steps are by no 
means limited to the calculation of the one loop energy. In fact, all the one-body 
properties at the one loop level can be calculated similarly, and higher order loop 
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calculations require the initial calculation of the same Green’s functions used here. 
For example, the one loop contribution to the soliton (hadron) static observables, 
such as the magnetic moment, charge density and charge radius, etc., can in general 
be reduced to evaluating the expression, 

c K 1 F(y) $ Tr(MG,h K 
where F(y) is a polynomial in y and M is a matrix acting on internal variables. In 
the above, renormalization counterterms must be subtracted. The number of 
subtractions needed to render each observable finite varies, but never exceeds the 
number required for the one loop energy. Also, G, can be generalized to include a 
vector potential that is static and spherically symmetric [8]. Thus, it should be 
emphasized that the techniques and methods described in this paper have much 
wider applications than just calculating the one loop energy. 

III. CONSTRUCTING THE FULL GREEN'S FUNCTIONS 

1. The Full Boson Green’s Function 

Denote by u,(y, r) and u,(y, r) the solutions of the equation 

d2 .!(I+ 1) ---- 
dr2 r2 

W(r)-y2 q5=0 
> 

which are regular at r = 0 and at r = co, respectively. D, then can be constructed 
from these two solutions [6], 

D,(Y, r, r’) = & Cuhh r) u,(Y, O&r -r) + u,(y, r)u,(.h r’)W- 01, (3.2) 
I 

where 0(r) is the step function with 0(O) = 4 and 

(3.3) 

is the Wronskian. Because of the various renormalization subtractions, we need to 
construct D,(y, r, r’) numerically with very high accuracy. We use the following 
scheme. Let u,,(y, r) and u,,(y, r) be the two independent solutions that satisfy 
Eq. (3.1) with W(r) replaced by W,, that are regular at r = 0 and r = co, respec- 
tively. They are known analytically and are related to modified spherical Bessel 
functions of the first and second kind, i, and k,, 

u,,(Y, r) = ri,(a,r), u&, r) = rkAa,r), (3.4) 
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where a,=(~*+ IV,) . lj2 D,, is given by (3.2) with uIo and vIo replacing U, and Us. 
Define 

u,(.b r) = u~d~5 r)fLh r), uhs r) = u,dh r) g,b r). (3.5) 

Then from Eq. (3.1) we find that f,(y, r) and g,(y, r) satisfy the equations, 

d2 MY, r) d 
rlr’+2--- 

U~Y, r) dr 
@Tr) 1 fh, r) = 0, 

d2 40bs r) d 
-&5+2--- 

ud~, r) dr 
m(r) 1 gdy, r) = 0. 

(3.6a) 

(3.6b) 

The boundary conditions for f, and g, are chosen so that both are very smooth 
functions of r, since the singular behavior of uI and u[ at r = 0 and r = 00 has been 
filtered out through the transformation (3.5). 

Since (3.6a) and (3.6b) are linear second-order differential equations, each has 
two linearly independent solutions. Of these two independent solutions, one may be 
chosen to be well behaved and, in practice, is very smooth. The other is rapidly 
varying and singular at either r = 0 or r = co. 

In order to generate the desired solutions it is necessary to integrate (3.6a) for fi 
from 0 to cc [lo]. The inside boundary condition is chosen to be 

f,(O) = 1, fi(O)=O. (3.7) 
As r + co, f, approaches a constant, C,. 

It is necessary to integrate (3.6b) for g, from GO to 0. The outside boundary con- 
dition is similarly chosen to be 

g,(r) = 1, g;(r) = 0, r-+00. (3.8) 

FIG. 1. The solutions f, and g, for the boson full Green’s function. The plot is for the same case as 
in Table I (I= 1, R = 10, T= 2, do = 1, and (h = 0.2) for y = 1. For ease of presentation, we have multi- 
pliedf, by a scale factor that can always be absorbed into the Wronskian. Bothf, and g, are monatonic 
in r. As y gets larger, f, and g, approach unity (see Figs. 2 and 3). 
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FIG. 2. Same as Fig. 1 with y = 5. 

Then g, goes to a constant as Y + 0. Note that fi and g, both approach unity as 
either y + cc or I -+ 00. The leading order term for E,, is 

(3.9) 

Thus we see that the accuracy is governed by the accuracy offi and g, with respect 
to unity. Some examples of solutionsf, and g, are plotted in Figs. l-3. 

2. THE FULL FERMION GREEN'S FUNCTION 

With minor added complications, the fermion Green’s function, G,(y, r, r’), can 
be constructed similarly with high accuracy. In order to construct the fermion 

FIG. 3. Same as Fig. 1 with y=9. 
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Green’s function, let U,(y, r) and V&V, r), which are regular at r = 0 and at r = co, 
respectively, be two independent solutions of the equation 

&Jr) - b 
dldr - K/r ’ 

(3.10) 

with 

UK=($), K=( 2). (3.11) 

G, can be constructed from the two solutions as follows [6,8], 

GAY, r, r’) = $-J { U,(Y, r) VT(Y, r’)fl(r’ -r) + V,(Y, r) C(Y, r’)e(r- r’)), 
K 

(3.12) 
where 

j,(y) = U~(Y, r) KAY, r) - WY, r) VXh 4 (3.13) 

is the Wronskian. 
Define 

vi= u&Jt,, u;= u&a;, (3.14) 

where (VA,, U&) satisfy Eq. (3.10) with dC(r) replaced by &,. Then we have 

( 
(&A-) - iy) uk&J~, -d/dr - (gq$ - iy) U&IV& 0: 

Wr + Wo + iy) UkJJ~, - (g#,(r) + iy) U&/U& )L ) ZrE =O’ (3’15) 

The boundary conditions are chosen so that 0: and 0; are very smooth functions 
of r. VA, and U& are known exactly and can be expressed in terms of the modified 
spherical Bessel functions, 

Uh, = rL l(cyr), (3.16a) 

u2 = rc,L(c,r) 
OK 

gdo+iY ’ 
(3.16b) 

where cY = [y* + (go,)*]“*. The solutions for (oi, 02,) are complex. Similarly, we 
can define 

vi= vp;, v;= v&J;, (3.17) 

where ( a:, a:) satisfy a similar equation as (0:) ai), and 

Vi,, = rk ~ l(cyrh (3.18a) 

v2 = -rc,k,(c,r) 
OK 

&0+iy 

ai and a: are also complex. 

(3.18b) 
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In analogy with the boson case discussed in the previous section, in order to 
obtain the desired solutions for 0: and o,?j, one needs to start from r = 0 and solve 
the coupled differential equation (3.15) from inside out. The boundary conditions 
can be easily determined using (3.15) and by setting dC = 4,(O). These are given by 

Q(O) = 1, (3.19a) 

(3.19b) 

Similarly, in order to obtain the desired solutions for P: and at, one needs to 
specify the boundary conditions for a: and a: at r--f CC and solve the coupled 
differential equations obeyed by a: and a: from outside in. The boundary 
conditions in this case are simply 

PL(r + co)= 1, P’f(r -+ co) = 1. (3.20) 

The resulting solutions to the coupled differential equations for (ai, 8:) and 
(ai, ai) are rather smooth everywhere, and solutions with high accuracy can be 
obtained with the aid of a good library [7] subroutine. 

IV. CALCULATING THE SUBTRACTION TERMS 

In order to calculate the renormalization subtraction terms for both the boson 
loop and the fermion loop, we need to calculate the matrix elements 

(4 4, Ir>, (4.1) 

with n = 1,2, and 3. This can be done most easily by noting that the formal solution 
of the equation defining D,, can be written 

D,,(y, r, r’) = -c m”$~$r’), 
I I 

where & is a complete set of eigenfunctions for the equation 

d2 1(1+ 1) 

(-- dr2’ r2 -+ wO dOi= hhdOi3 (4.3) 

which are normalized to 

i m dr 4&(r) #oj(r)= 6,, 0 

and satisfy the completeness relation 

1 4oi(r) &ik’) = &r - r’). 

(4.4a) 

(4.4b) 
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From Eqs. (4.2), (4.4a), and (4.4b), it is easy to derive [3] 

D;;,(y, r, r’) = (rl D& Ir’) = (- 1)” 7 m$‘cmh:;(;:’ 
01 

DoICy, r, 0. (4.5) 

Using the solution of Do, in terms of the modified Bessel functions, we finally 
arrive at 

1 
D”(y’ ” ‘-) = (n - 1 )! 1 -q-*4(q) k,(q)). (4.6) 

The Appendix gives the detailed forms of the various matrix elements in terms of 
the modified spherical Bessel functions and their derivatives. 

V. SOME ILLUSTRATIVE RESULTS 

Combining all the above ideas, we have developed and tested relevant 
FORTRAN codes to calculate the energy E. Our codes mainly consist of four 
subroutines, BESSEL, BOSON, FERMION, and COUNTER. BESSEL is a 
subroutine that calculates the modified spherical Bessel functions with high 
accuracy using standard procedures. BOSON and FERMION are subroutines that 
calculate the full boson and fermion Green’s functions. COUNTER is a subroutine 
that calculates the various renormalization subtraction terms for both the boson 
and fermion loop. 

The numerical work involved in the calculations is extensive; associated with any 
extensive numerical project is the question of how trustworthy the results are, since 
it is easy to make a programming mistake. 

The subroutine BESSEL can be checked by comparison of its results with 
accurate tables of Bessel functions. There are several ways to check BOSON, FER- 
MION, and COUNTER. First, in numerical studies of physical systems, we always 
put the systems inside a large but finite space volume and then use finite grids to 
discretize the volume. It is, therefore, necessary to make sure that numerical results 
are stable against changes of the size of the volume and the number of grid points. 
The artifacts introduced by the effects of finite volume and grids should be negli- 
gible for physical results. We used several different sizes of the volume and numbers 
of grid points so that our final results for the numerically constructed Green’s func- 
tions are stable against changes of both. We also checked to make sure that the 
Wronskians are constant for fixed y. Second, the y-integration should converge 
after renormalization subtractions. This requires precise cancellations for each of 
the subtractions. More importantly, our results have been checked by two other 
means, which makes us confident that they are correct. First of all, for smooth 

SXl/S5/2-14 
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solitons, where the derivative expansion [3,4, 111 works, we demonstrated that the 
expansions clearly converge to the numerically calculated full one-loop energies, 
thus indicating that our numerical results are correct. Second, the fermion loop 
energy, which is more difficult to calculate than the boson loop energy and has 
similar subtraction terms as the boson loop energy, can be calculated differently. 
Instead of using the Green’s function method, one can simply calculate the fermion 
negative energy eigenvalues [9]. One can then use the same subtraction scheme as 
in the Green’s function method to renormalize the theory. For soliton configura- 
tions that have been studied using both methods, the results always agree up to 
several digits; and in particular, all results presented below agree to all but the last 
digit shown. 

For the purpose of illustration, we present some sample results in Tables IIIII. 
For definiteness, we take a Wood-Saxon form for dC, 

qbc=do- 4h 
1 +exp((v-R)/T)’ (5.1) 

w = 3qq - Ipi. (5.2) 

R controls the radius of I$,, T its surface thickness, and #b the depth of 4, at the 
origin. In Table I, we present the results for the I= 1 component of the boson loop 
with do = 1, db = 0.2, R = 10, and T= 2. The first entry gives the value of 
j y2 442~ ji?’ dr DAY, r, r). Although this quantity should be infinite, we truncate 
the y-integration and insist that after subtracting the counter terms the results are 
insensitive to the cutoff. The cutoff we used for the y-integration that produced 
the data of Tables I and II is ,y = 40. The second entry gives the corresponding 
value after the first renormalization subtraction, that is, 1 y2 dy/2n j? dr 
{D,( y, r, r) - D,,( y, r, r)}. The third entry gives the value after the second subtrac- 
tion, j y2 dy/2n j? dr{D,(y, r, r) - D,,( y, r, r) - D,$( y, r, r) w}. Finally, the last 
entry gives the value of the renormalized energy, Eq. (2.22). In Table II, we present 
the results for the K = 2 component of the fermion loop. Here we take R = 10, T= 2, 
d,, = 1, db = 1, and g = 1. Similar to the boson case, the first entry gives the value 
-4 j y dy/2n J; dr tr Im G,( y, r, r). The second entry gives the value after the first 
subtraction, -4 J ( y2 dy/2n) j; dr tr{ (l/y) Im G,( y, r, r) + eoK( y, r, r)}, and so on. 
The final entry gives the value of the renormalized energy, Eq. (2.23). We have 
varied the box size in which the system is contained from L = 15 (L is the radius 

TABLE I 

The Values of the I= 1 Component for the Boson Loop Energy after Various 
Renormalization Subtractions with R = 10, T= 2, q& = 1, and db = 0.2 

Unrenormalized 1st subtraction 

-7910.%021 -3.15144 

2nd subtraction 

-0.09206 

3rd subtraction 

-0.01387 
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TABLE II 

The Values of the K = 2 Component for the Fermion Loop Energy after Various 
Renormalization Subtractions with R = 10, T= 2, #,, = 1, and qSb = 1 

Unrenormalized 1st subtraction 2nd subtraction 3rd subtraction 

15826.41549 7.58564 0.45408 0.14875 

of the box size) to L = 25. The first four digits of our final results for the energy of 
each partial wave after renormalization subtractions are insensitive to the variation. 
From the results, we see clearly that we need high accuracy in the calculations. 
After various renormalization subtractions, the significant digits of the starting 
values are reduced from 9 to 4 for the boson loop and from 10 to 5 for the fermion 
loop. Table III presents the energies of different partial waves for the fermion loop 
in one soliton configuration and their corresponding values of leading order in the 
derivative expansion [4]. For K = 2, the value of E, = 0.14875 is to be compared 
with the value obtained through the eigenvalue method [9], 0.14876. Also it takes 
approximately 13 h of CPU time on a VAX 1 l/780 to obtain the results of E,, 
K. = 1, 2, .,.) 12 in Talbe III. The K = 1 takes 25 min CPU time, K = 2 takes 30 min, 
and K = 13 takes about 2 h. In the last column of Table III, we give the CPU times 
in seconds that are required for calculating the energy of each partial wave on a 
CRAY X-MP48 machine. 

Finally, we discuss summing the various partial waves to obtain the total loop 
energies. Since it is impossible to calculate all partial waves, we have to use 

TABLE III 

The Fermion Loop Energy and the Two Leading Terms in Its Derivative Expansion 
for Various Partial-Waves with R = 10, T= 2, d,, = 1, and 4h = 1 

K E Fr j d3r V, j d3r(VF+ iZAVcb,)*) CPU Time (s) 

1 0.221800 0.216104 0.224060 24.0 
2 0.148746 0.144800 0.149616 27.9 
3 0.102324 0.099552 0.102758 28.9 
4 0.071774 0.069802 0.072022 29.8 
5 0.051212 0.049790 0.051364 30.7 
6 0.037118 0.036082 0.037218 31.7 
7 0.027304 0.026540 0.027372 32.6 
8 0.020370 0.019800 0.020418 33.8 
9 0.015400 0.014972 0.015438 34.9 

10 0.011792 0.011464 0.011818 36.1 
11 0.009138 0.008886 0.009159 36.9 
12 0.007160 0.006961 0.007173 37.8 

Note. The last column gives CPU times used in calculating E, for each partial wave using a CRAY 
X-MP machine. The data are obtained by using grids of N, = 500 along the spatial r-direction, and 
N, = 64 along the y-direction. 
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extrapolation [lo] to obtain the total sum over all the partial waves. Assuming for 
large 1, E,, = Cy= o cc Jl i + “, one can determine n using the known results at 1 and 
I+ 1 so that lnEB,% (I+ 1)” EBlfl, then one can determine cli by using the known 
results of 1, . . . . I+ m and solving a set of coupled linear algebraic equations. One can 
improve the extrapolation by using several known consecutive E,,‘s to calculate the 
total sum, and then perform repeated extrapolation [lo] using these sums. Similar 
methods apply to the fermion energy as well. This extrapolation, however, can only 
be applied to cases in which the energies of the last several partial waves are in the 
asymptotic region to a good extent. That is, the first few coefficients in the expan- 
sion series of E,, (or EFK) in terms of the inverse powers of 1 (or K) should 
approximately have the same values for the last several partial waves. 

If for a soliton configuration the convergence of the partial wave sum is not fast, 
such as the case of Table III, results from the extrapolation would not be very 
accurate. For such cases, we will use the following method to obtain the energy. 
Even when the derivative expansion [4] does not work well for the total energy, 
it becomes accurate for higher partial waves, much as the Born approximation 
improves as energy is increased. Since the major contributions to the total sum of 
the energy come from the lower partial waves, we can get a good estimate of the 
total energy by using the first few terms in the derivative expansion to approximate 
the energies of higher partial waves. The total sum of all the partial waves for the 
leading terms of the derivative expansion can be easily calculated. They are given 
by the spatial integrations of the analytically known expressions (such as for V,.(dC) 
and Z,(d,.)). For example, for the one fermion loop we have 

where E, is given by Eq. (2.23), and 

If,= - & 
i 

(a%)” ln $1 ((&)‘- (&0)2)(3(s&.)2 - (g&)‘) j, (5.4) 

2 4: g2 
G-(4,)= -&dnz-m. (5.5) 

Under this approximation, the sum of all the partial waves with I (or K) greater 
than a certain integer n will be the total sum minus the sum of the partial waves 
up to n. The leading terms of the derivative expansion for each partial wave can be 
calculated with high accuracy [4]. 

We apply the method to the case presented in Table III. From Table III, we 
know empirically that for each partial wave, the energy is always greater than the 
effective potential alone and less than the sum of the effective potential with the 
second derivative contributions. By using the higher partial waves V, to 
approximate the energy, we will get a lower bound for the total energy. Similarly, 
by using the higher partial waves of V,+ $Z,(V4,.)2 we will obtain an upper bound 
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for the total energy. From the analytical forms of V,(#,.) and Z,(4,.) given by 
Eqs. (5.4) and (5.5), we obtain j d3r V,= 12.018, and j d3r $Z,(V4,)‘=0.377. The 
sum of lower partial waves for both can be obtained using the data given in 
Table III. Similarly, the sum of lower partial waves of E,, K from 1 to 12, can be 
done (4 CE: :’ EFK). From these, we get 12.279 < E, < 12.356. Notice that the error 
for E, estimated from the bounds is less than 1%. It would also be possible to 
maintain a running extrapolation, and then empirically extrapolate this derivative 
expansion improved running sum. In all cases one requires stability as the crucial 
test of when an extrapolation has stabilized. 

Besides extrapolations based on the empirically determined dependence of the 
energy on K (or I) and the derivative expansion, at this moment we have no other 
means to estimate the energy contribution from higher partial waves. The former 
extrapolation only starts to work when the dependence of higher partial waves on 
1 (or K) enters the asymptotic region, while the latter is best suited for smooth 
soliton configurations where the derivative expansion is valid. In fact, this latter 
method cannot be applied to solitons for which the effective potential becomes 
imaginary and higher order terms blow up. This happens for all topological solitons 
in 1 + 1 dimensions, as an important example [12]. Better ways to estimate the 
remainders need to be further investigated. 

APPENDIX 

From Section IV, we can express the matrix elements, (xl D&(y) Ix), in terms 
of the modified spherical Bessel functions and their derivatives through the formula 

1 
(x’ D;fh) Ix) = (n - 1 )! 

1 =--- 
(n - l)! 

4dJ4 4 xl 

{ -a,h(a,-4 kAa,x)l. (1) 

Defining [ = a-“x: 

(h(i) k,(i))’ =; (h(i) k,(i)), (h(i) k,(i))” =$ (b(i) k,(i)), (2) 

and 

we obtain 

(h(i) k,(i))‘“’ = -$ (i,(i) k,(i)), n b 3, (3) 

(Xl &i(Y) Ix> 

= -& {h(i) k,(i) + i(i,(i) k,(i))‘}, (4) 
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(xl a$(Y) Ix> 

= -& { -i,(i) k,(5) + i(i,(i) k,(i))’ + i’Mi) w))“~~ 

(xl G(Y) Ix> 

1 =-- 
48a.z 

<xl WY) Ix> 
1 

{34(i) k,(i) - 3i(i,(i) k,(i))’ + i3(i,(i) k,(i))‘3’), 

= -384a7 { - l%(iJ k,(i) + 1X(&(i) k,(i))’ - 3i2M) k,(i))” 

-X3&l k,(i)Y3’+ i”(i,(i) k,(i))‘4’l. 

(5) 

(6) 

(7) 
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